Efficient coupling of ATP hydrolysis to translocation by RecQ helicase.
نویسندگان
چکیده
Helicases are ubiquitous enzymes that unwind double-stranded DNA (dsDNA) to reveal single-stranded DNA (ssDNA) during essential processes such as replication, transcription, or repair. The Escherichia coli RecQ protein is a 3' to 5' helicase, which functions in the processes of homologous recombination and replication fork restart. Here, we analyzed the relationship between ATP hydrolysis by RecQ and its translocation on ssDNA. We monitored a single round of RecQ translocation on ssDNA by measuring the rates of inorganic phosphate release during translocation, and the dissociation of RecQ from ssDNA. We find that RecQ translocates with a rate of 16( ± 4) nucleotides/s and moves on average only 36( ± 2) nucleotides before dissociating. Fitting to an n-step kinetic model suggests that the helicase displays a nonuniform translocation mechanism in which it moves approximately five nucleotides rapidly before undergoing a rate-limiting kinetic slow step. Unexpectedly, RecQ requires a length of 34( ± 3) nucleotides to bind and translocate on ssDNA. This large site size suggests that several monomers are required to bind DNA prior to translocation. Energetically, the RecQ helicase couples the hydrolysis of one ATP molecule to the translocation of more than one nucleotide (1.6 ± 0.3). Thus, our data show that RecQ translocates on ssDNA by efficiently coupling the hydrolysis of one ATP molecule into structural alterations that result in movement of approximately two nucleotides, presumably by an inchworm mechanism. These attributes are consistent with the function of RecQ in recombination and replication.
منابع مشابه
RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling.
Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, kno...
متن کاملTranslocation of E. coli RecQ helicase on single-stranded DNA.
A member of the SF2 family of helicases, Escherichia coli RecQ, is involved in the recombination and repair of double-stranded DNA breaks and single-stranded DNA (ssDNA) gaps. Although the unwinding activity of this helicase has been studied biochemically, the mechanism of translocation remains unclear. To this end, using ssDNA of varying lengths, the steady-state ATP hydrolysis activity of Rec...
متن کاملThe HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling
DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom's syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibil...
متن کاملMechanism of RecQ helicase mechanoenzymatic coupling reveals that the DNA interactions of the ADP-bound enzyme control translocation run terminations
The processing of various DNA structures by RecQ helicases is crucial for genome maintenance in both bacteria and eukaryotes. RecQ helicases perform active destabilization of DNA duplexes, based on tight coupling of their ATPase activity to moderately processive translocation along DNA strands. Here, we determined the ATPase kinetic mechanism of E. coli RecQ helicase to reveal how mechanoenzyma...
متن کاملCoupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence
RecQ enzymes are broadly conserved Superfamily-2 (SF-2) DNA helicases that play critical roles in DNA metabolism. RecQ proteins use the energy of ATP hydrolysis to drive DNA unwinding; however, the mechanisms by which RecQ links ATPase activity to DNA-binding/unwinding are unknown. In many Superfamily-1 (SF-1) DNA helicases, helicase sequence motif III links these activities by binding both sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2012